Solar power system that works at night a renewable energy game-changer



An innovative thermal battery being developed by researchers at Curtin University in Australia may be key to a solar power system capable of producing electricity overnight, rivaling fossil fuels as a viable source of power for commercial and heavy industries around the world, including mining operations.

Prof. Craig Buckley

Curtin is collaborating with international renewable energy companies United Sun Systems and ITP Thermal on the potentially game-changing project, which is being led by Prof. Craig Buckley from Curtin’s School of Electrical Engineering, Computing and Mathematical Sciences.

Buckley says the thermal battery was part of the concentrated solar power (CSP) system being developed by United Sun Systems, which requires a battery to store and release energy to enable non-stop solar power generation.

“Storage has long been a stumbling point for renewable energy, but our prototype thermal battery is able to store and, as required, release solar energy without reliance on sunlight at all times,” Buckley says. “The battery uses a high-temperature metal hydride or metal carbonate as the heat storage medium and a low temperature gas storage vessel for storing the hydrogen or carbon dioxide. At night, and in times of cloud cover, hydrogen or carbon dioxide is released from the gas storage vessel and absorbed by the higher temperature metal to form a metal hydride/metal carbonate, which produces heat used to generate electricity.”

Prof. Chris Moran, Curtin University’s deputy vice-chancellor of research, says the project aims to develop a solar power system which produces electricity 24 hours a day, seven days a week and would be commercially viable for industry.

“As with the lithium battery systems that Curtin is also developing, the deployment of a cost-effective energy storage system using thermal batteries will revolutionise the landscape of renewable energy production world-wide by allowing renewables to truly compete with fossil fuels,” Moran says. “While a lithium battery stores electrical energy to be used to provide electricity when the sun is not shining, this thermal battery stores heat from concentrated solar thermal, which can be used when the sun is not shining to run a turbine to produce electricity.”

The research aims to develop new technology to integrate thermochemical energy storage via a thermal battery into a dish-Stirling system. A dish-Stirling system can provide up to 46 kW of power and is ideal for powering remote energy intensive industries such as mine sites due to it providing power on demand and as required. Several dishes can be deployed depending on the power requirements of the site. The research project, known as the “Thermal battery development for concentrated solar power system”, was awarded AU$1-million by Australia’s federal government through its Global Innovation Linkages Programme.

Contact Yasmine Phillips, Curtin University, yasmine.phillips@curtin.edu.au

The post Solar power system that works at night a renewable energy game-changer appeared first on EE Publishers.

Source: EE plublishers

More news